5 research outputs found

    The Case for Non-Volatile RAM in Cloud HPCaaS

    Full text link
    HPC as a service (HPCaaS) is a new way to expose HPC resources via cloud services. However, continued effort to port large-scale tightly coupled applications with high interprocessor communication to multiple (and many) nodes synchronously, as in on-premise supercomputers, is still far from satisfactory due to network latencies. As a consequence, in said cases, HPCaaS is recommended to be used with one or few instances. In this paper we take the claim that new piece of memory hardware, namely Non-Volatile RAM (NVRAM), can allow such computations to scale up to an order of magnitude with marginalized penalty in comparison to RAM. Moreover, we suggest that the introduction of NVRAM to HPCaaS can be cost-effective to the users and the suppliers in numerous forms.Comment: 4 page

    Portability and Scalability of OpenMP Offloading on State-of-the-art Accelerators

    Full text link
    Over the last decade, most of the increase in computing power has been gained by advances in accelerated many-core architectures, mainly in the form of GPGPUs. While accelerators achieve phenomenal performances in various computing tasks, their utilization requires code adaptations and transformations. Thus, OpenMP, the most common standard for multi-threading in scientific computing applications, introduced offloading capabilities between host (CPUs) and accelerators since v4.0, with increasing support in the successive v4.5, v5.0, v5.1, and the latest v5.2 versions. Recently, two state-of-the-art GPUs - the Intel Ponte Vecchio Max 1100 and the NVIDIA A100 GPUs - were released to the market, with the oneAPI and GNU LLVM-backed compilation for offloading, correspondingly. In this work, we present early performance results of OpenMP offloading capabilities to these devices while specifically analyzing the potability of advanced directives (using SOLLVE's OMPVV test suite) and the scalability of the hardware in representative scientific mini-app (the LULESH benchmark). Our results show that the vast majority of the offloading directives in v4.5 and 5.0 are supported in the latest oneAPI and GNU compilers; however, the support in v5.1 and v5.2 is still lacking. From the performance perspective, we found that PVC is up to 37% better than the A100 on the LULESH benchmark, presenting better performance in computing and data movements.Comment: 13 page

    CXL Memory as Persistent Memory for Disaggregated HPC: A Practical Approach

    Full text link
    In the landscape of High-Performance Computing (HPC), the quest for efficient and scalable memory solutions remains paramount. The advent of Compute Express Link (CXL) introduces a promising avenue with its potential to function as a Persistent Memory (PMem) solution in the context of disaggregated HPC systems. This paper presents a comprehensive exploration of CXL memory's viability as a candidate for PMem, supported by physical experiments conducted on cutting-edge multi-NUMA nodes equipped with CXL-attached memory prototypes. Our study not only benchmarks the performance of CXL memory but also illustrates the seamless transition from traditional PMem programming models to CXL, reinforcing its practicality. To substantiate our claims, we establish a tangible CXL prototype using an FPGA card embodying CXL 1.1/2.0 compliant endpoint designs (Intel FPGA CXL IP). Performance evaluations, executed through the STREAM and STREAM-PMem benchmarks, showcase CXL memory's ability to mirror PMem characteristics in App-Direct and Memory Mode while achieving impressive bandwidth metrics with Intel 4th generation Xeon (Sapphire Rapids) processors. The results elucidate the feasibility of CXL memory as a persistent memory solution, outperforming previously established benchmarks. In contrast to published DCPMM results, our CXL-DDR4 memory module offers comparable bandwidth to local DDR4 memory configurations, albeit with a moderate decrease in performance. The modified STREAM-PMem application underscores the ease of transitioning programming models from PMem to CXL, thus underscoring the practicality of adopting CXL memory.Comment: 12 pages, 9 figure
    corecore